• Tornillos Sólidos Pretensados con SOL101

He grabado un vídeo explicando cómo resolver en FEMAP V2019.1 problemas de contacto superficie-a-superficie con “múltiples” tornillos pretensados mallados con elementos 3-D sólidos CHEXA de 8-nodos usando el solver de Análisis Estático Lineal Simcenter Nastran (SOL101). Y aquí el uso del término “múltiple” es clave porque si el modelo de FEMAP incluyera un único tornillo sólido pretensado el cálculo estático lineal estaría bien, pero si tenemos más de un tornillo sólido pretensado el resultado que se obtiene no es correcto, sólo se pretensa un tornillo sólido de forma efectiva, el resto de tornillos no trabajan. El error ya se ha reportado al equipo de desarrollo de Simcenter Nastran. Y si el usuario es diligente en el sentido de verificar la bondad de los resultados enseguida se dará cuenta del error.

  • Pero si quieres pretensar tornillos sólidos genuinos con la versión actual de FEMAP V2019.1 sin modificar el mallado ni poder esperar a que se corrija el error, aquí tienes una solución alternativa, verás qué fácil!!.

Modelo Ejemplo

Para explicar el proceso de creación del modelo de Elementos Finitos de tornillos sólidos pretensados en FEMAP V2019.1 he “inventado” la geometría y cargas de un ejemplo bastante sencillo consistente en un ensamblaje de acero con 4 tornillos de M10 calidad 8.8 pretensados con 20 kN cada uno y una carga axial de tracción de valor 100 kN como carga de servicio:

Para el dato de precarga en los tornillos he utilizado la WEB de TRIBOLOGY-ABC.com que contiene información de gran ayuda para el ingeniero de diseño.

En el Simcenter Nastran USER’S GUIDE tenéis la descripción completa del proceso de cálculo que sigue el software Simcenter Nastran para el pretensado de tornillos …

Bolts (and certain types of threaded fasteners) are commonly tightened to levels producing very high preload forces. Preloading bolts to about 75% of their proof strength is typical. The bolt preload capability in Simcenter Nastran allows you to predict stresses in the bolts and the bolted medium that arise from bolt preload forces alone or bolt preload forces and service loads.

Historically, bolt preload was modeled using either an equivalent thermal load approach or a multipoint constraint (MPC) approach. Both methods are capable of providing accurate results. However, both methods are labor intensive requiring multiple solutions, manual capture of data, and hand calculations.

The Simcenter Nastran approach is much more efficient because the entire run is automated and allows for direct entry of the bolt preload forces. During the run, the model is solved twice. The first solution calculates the strains in the bolts resulting from bolt preload forces. The second solution uses that strain along with any other service loads as the total applied load.
../..

Malla con Elementos 3-D Sólidos CHEXA

La siguiente imagen muestra el modelo mallado con elementos sólidos 3-D a base de hexaedros CHEXA de 8-nodos, obteniendo una malla de excelente calidad y reducido tamaño (∼50,000 nodos y ∼39,000 elementos): en problemas de contacto crear un tamaño de modelo con el menor nº de nodos es clave, sólo es posible mallando con elementos hexaédricos CHEXA de 8-nodos, olvídate de los tetraedros CTETRA de 10-nodos, el modelo resultante sería alrededor de 10 veces mayor!! (en problemas de contacto no es lo mismo resolver un modelo con 50,000 nodos que 500,000 nodos, ojo!!). Atentos al vídeo cuando explico cómo evitar penetraciones de mallado no deseadas entre elementos de contacto!!, es clave para obtener resultados de tensiones razonables, sin que exista concentración de tensiones elevadas ni deformaciones no deseadas.

Bolt Region

El primer paso para definir en FEMAP una precarga en tornillos sólidos es usar la orden “Connect > Bolt Region” seleccionando los nodos de un plano transversal y el eje axial del tornillo sólido, con esta información el solver Simcenter Nastran calculará el área de la sección transversal y la orientación del tornillo.

Bolt Preload

A continuación se define la precarga del tornillo usando la orden “Model > Load > Bolt Preload“, esta orden se puede usar en un análisis estático lineal (SOL101), modal (SOL103), pandeo (SOL105), no lineal avanzado (SOL601) y con los nuevos módulos de análisis no lineal multi-step structural & kinematic (SOL401/402). Cada “Bolt Preload” se asocia con su correspondiente “Bolt Region” (que deberá estar definida con antelación en caso de tornillos mallados con elementos sólidos).

Truco: un Tornillo por Caso de Carga

Investigando con el GTAC (quiero dar las gracias a mi amigo David Whitehead, grande!) el error está en la entrada BOLTFOR de Simcenter Nastran: cuando más de una tarjeta BOLTFOR se escribe con un mismo SID en teoría los tornillos identificados por su ID (en el listado siguiente los tornillos 100, 101, 102 y 103) se deberían precargar todos juntos, pero esto no ocurre debido a un error de software.

La solución es crear un caso de carga por cada tornillo por separado, meter BOLT PRELOAD#1 en el LOAD CASE#1, BOLT PRELOAD#2 en el LOAD CASE#2 y así sucesivamente.

Y finalmente combinar todos los casos de carga en tornillos usando la orden “Model > Load > Combine” creando una combinación del tipo NASTRAN LOAD con un factor de escala de 1.0 aplicado a cada caso de carga primario, de esta forma tenemos una combinación que incluye todos los tornillos pretensados para utilizarla durante el cálculo.

Es clave no confundirse al crear la combinación de casos de carga, asegúrate de elegir “Nastran LOAD Combination” en vez de “Standard” (por defecto).

Si ejecutamos la orden “Model > Analysis > Preview Input” y generamos el fichero de entrada de Simcenter Nastran veremos que FEMAP usará diferente SID con cada tarjeta BOLTFOR, resolviendo el problema aparentemente.

Pero no, todavía no está resuelto el problema por completo: FEMAP no escribe el contenido de la tarjeta BOLTLD ni en el “bulk data” ni en el “case control section“, un nuevo error esta vez culpa de FEMAP causado por usar la combinación NASTRAN LOAD, así que es necesario meter su valor usando un “user defined text“.

No hay problema, en el CASE CONTROL SECTION de nastran metemos a mano el texto BOLTLD = 999

Y en el BULK DATA SECTION metemos a mano el texto siguiente (fijaros que cada campo son 8 caracteres):

$$
BOLTLD       999     1.0     1.0       1     1.0       2     1.0       3+
+            1.0       4
$$

En vez de activar el EDIT PREVIEW y pegar el texto en el fichero de entrada de nastran es más recomendable editar el estudio correspondiente y meter el texto de usuario como parte del análisis, de esta forma todo el contenido forma parte del mismo análisis, no tienes que meterlo de nuevo cada vez que ejecutas un PREVIEW INPUT.

Por ejemplo, en el estudio activo vete a “Options > Bulk Data” y haz doble-clic en cualquier campo:

Verás que se despliega la ventana del “Nastran Bulk Data Options“. En la esquina inferior derecha haz clic en “End Text” (puedes meterlo al principio o al final, a mí me gusta más al final de cada sección), quiere decir que vamos a meter un texto de usuario que se añadirá a final de la sección “NASTRAN Bulk Data” del fichero de entrada de Nastran que escriba FEMAP:

Y finalmente se abre una nueva ventana titulada “Analysis Text” donde el usuario podrá pegar el texto de la tarjeta BOLTLD:

La siguiente imagen muestra la sintaxis de la tarjeta BOLTLD, cada orden de nastran la tenéis disponible en FEMAP en “Help > Simcenter Nastran > QUICK REFERENCE GUIDE (QRG)“, el QRG es la biblia, un PDF con casi 2400 páginas!!. Es importante conocer la sintaxis de la orden BOLTLD, así en caso de tener un modelo con más de 4 tornillos podrás editar el texto de entrada correctamente, OK?.

Postprocesado de Resultados

Sólo Cargas de Servicio:
La siguiente imagen muestra el reparto de las tensiones nodales en tornillos usando la Máxima Tensión Principal de Tracción (σ1) sólo bajo cargas de servicio: aquí no se ha definido ninguna precarga en tornillos, así que todo trabaja a tracción. Las tensiones en los tornillos rondan los 800 MPa.

Usando la creación automática de grupos por propiedades en FEMAP nos permite aislar componentes por propiedades y mostrar la leyenda de resultados ajustada únicamente a los nodos y elementos del grupo, permitiendo estudiar los desplazamientos y  tensiones en cada componentes de forma exacta. Así, activando el grupo de una de las bridas, podemos mostrar en pantalla las tensiones nodales (MPa) en la brida usando la Máxima Tensión Principal de Tracción (σ1) sólo bajo cargas de servicio, como vemos unos 325 MPa.

Sólo Precarga en Tornillos:
La siguiente imagen muestra el reparto de las tensiones nodales en tornillos usando la Máxima Tensión Principal de Tracción (σ1) sólo bajo precarga en tornillos. Viendo la deformada se demuestra que todos los tornillos están trabajando de forma efectiva, con una tensión alrededor de los 425 MPa.

La siguiente imagen muestra el reparto de las tensiones nodales en la brida usando la componente de Tensión de vonMises = 150 MPa, bajo la precarga en tornillos. Aquí la brida trabaja masivamente a compresión, por eso no pongo la componente de Máxima Tensión Principal de Tracción (σ1) ya que su valor es testimonial (alcanza únicamente unos 15 MPa), la brida está trabajando únicamente bajo la precarga de los tornillos a compresión.

Precarga en Tornillos + Cargas de Servicio:
La siguiente imagen muestra el reparto de las tensiones nodales en el grupo de los tornillos usando la componente de Máxima Tensión Principal de Tracción (σ1) bajo cargas de pretensado + servicio: nótese que la máxima tensión en los tornillos casi alcanza los 1000 MPa.

Dado que la tensión en los tornillos con la precarga de 20 kN está cerca de los 1000 MPa es recomendable usar tornillos de alta resistencia (TAR) de calidad 10.9, o cambiar directamente a tornillos de M12. También dependiendo del objetivo del diseño, por ejemplo supongamos que se busca además minimizar la separación de las bridas para conseguir una unión lo más estanca posible, entonces sería recomendable duplicar el nº de tornillos en vez de aumentar la métrica, etc… Nótese que este artículo es un TUTORIAL para enseñar cómo trabajar con tornillos pretensados usando FEMAP V2019.1 y Simcenter Nastran, no tiene mayores pretensiones sobre opciones de diseño, ¿OK?.

Y finalmente la siguiente imagen muestra las tensiones nodales (MPa) en el grupo de la brida usando la componente de Máxima Tensión Principal de Tracción (σ1) bajo cargas de pretensado + servicio: vemos que gracias al pretensado de los tornillos la máxima tensión principal de tracción de la brida se reduce en unos 90 MPa, pasamos de 390 MPa a menos de 300 MPa, esto demuestra que las uniones atornilladas siempre deben someterse a un proceso de pretensado, las ventajas de aumento de vida a fatiga en los componentes mecánicos es importante.

Las uniones con tornillos pretensados son más eficaces que las uniones realizadas con tornillos NO pretensados ya que resisten mejor lo efectos de fatiga al no depender su tensión directamente de las cargas de servicio. Además, el rozamiento existente evita que los tornillos trabajan a cortadura (por cierto, en este ejemplo en la propiedad de contacto no se ha incluido rozamiento, existe deslizamiento perfecto). En definitiva, usando una carga de pretensado correcta en los tornillos se consigue una unión mucho más rígida, menos deformable y con un comportamiento óptimo a fatiga en el estado límite de servicio.

Pues nada, espero que este artículo os sea útil y sirva de ayuda para resolver con éxito problemas de tornillos pretensados mallados con elementos sólidos y resueltos mediante cálculo estático lineal con FEMAP y Simcenter Nastran (SOL101), si tenéis cualquier pregunta no dudéis en consultarme, encantado de ayudaros.
Aquí tenéis el video que he grabado explicando paso-a-paso el proceso, espero que os guste!!.

Ya estoy preparando el siguiente post titulado “Tornillos Pretensados con SOL401“, usaré este mismo ejemplo de tornillos sólidos para enseñar cómo resolver el problema usando el nuevo módulo Simcenter Nastran No Lineal Multi-Step Structural (SOL401), compararemos resultados con el módulo estático lineal (SOL101) ….

Saludos,
Blas.

30.- TRATADO COMPLETO SOBRE CÓMO RESOLVER PROBLEMAS LINEALES DE “ZUNCHADO” CON FEMAP y NX NASTRAN

Hola!,

Os he preparado un vídeo muy completo sobre cómo calcular con FEMAP y NX NASTRAN las tensiones de vonMises de Zunchado (también conocido como “Snap-Fit“, “Press-Fit“, “Interference-Fit“, “Overlapping“, etc..) por contacto lineal “superficie-a-superficie” que se producen en el montaje de piezas eje-agujero en donde el diámetro del agujero es ligeramente menor que el diámetro del eje. El zunchado se puede realizar por presión (“Press-Fit“) o utilizar un calentador por inducción para dilatar suficientemente la pieza hembra y proceder el montaje sin esfuerzo. Finalmente el conjunto se deja enfriar hasta la temperatura ambiente, garantizando una unión perfecta. El Zunchado por presión (“Press-Fit“) únicamente se puede resolver mediante análisis no lineal avanzado (SOL601/701), aquí os voy a enseñar únicamente cómo simular las tensiones de contacto por zunchado térmico mediante un sencillo análisis estático lineral (SOL101).

Método-1: INTERFERENCIA “EXPLÍCITA”

En el ejemplo propuesto se trata de estudiar las tensiones de zunchado entre un eje de Acero y un casquillo de Nylon. El radio del eje es 0.05 mm mayor que el radio del agujero, y la geometría de base para el mallado presenta dicha interferencia de forma “explícita”.

En la siguiente imagen definimos los parámetros MINDi y MAXDi correspondientes a la mínima y máxima distancia de búsqueda en la cual el solver NX NASTRAN determina inicialmente si la distancia entre caras de elementos pertenecientes a las regiones de contacto “source” y “target” están dentro del umbral para crear elementos de contacto. Estos valores se utilizan sólo una vez, y al principio del análisis estático lineal (SOL101), y sirven para determinar dónde se deben crear inicialmente elementos de contacto. La mínima distancia debe ser negativa y ligeramente mayor del valor de la interferencia, tomaremos por ejemplo MINDi=-0.5mm. Por supuesto, en este caso utilizamos el parámetro INIPENE=0, así el contacto se evalúa tal como se ha modelizado …

Os recuerdo cómo funcionan los contactos lineales en NX NASTRAN: el solver proyecta normales a partir de las caras de los elementos pertenecientes a la región origen (“source” o “slave“) y mira a ver si alguna de esas normales intersecta con caras libres de elementos de la región destino (“target” o “master“). Si la normal proyectada intersecta con una cara de un elemento, y la distancia entre las dos caras está dentro del rango definido por los valores MINDi y MAXDi, entonces se crea un elemento de contacto. Recordar también que el análisis SOL101 se usa en problemas lineales con pequeños desplazamientos y deformaciones, por tanto el nº de elementos de contacto creados inicialmente permanece constante para el resto del análisis, no se actualiza con cada iteración de contacto.

La siguiente imagen muestra la deformada (exagerada!!) y las tensiones de vonMises (MPa) de zunchado obtenidas mallando con elementos lineales 3-D sólidos hexaédricos CHEXA de 8-nodos (bajo orden): la calidad de los resultados tanto de tensiones como desplazamientos deja mucho que desear!!.

La siguiente imagen muestra la deformada (exagerada!!) y las tensiones de vonMises (MPa) de zunchado obtenidas mallando con elementos parabólicos 3-D sólidos hexaédricos CHEXA de 20-nodos: la calidad de los resultados es excelente!!.

Y finalmente la siguiente imagen muestra la deformada (de nuevo exagerada!!) y las tensiones de vonMises (MPa) de zunchado obtenidas mallando con elementos parabólicos 3-D sólidos tetraédricos de alto orden CTETRA de 10-nodos: sorprende la calidad de los resultados, prácticamente al nivel de los elementos hexaédricos CHEXA de 20-nodos!!.

Método-2: OFFSET

El parámetro OFFSET es una opción de las regiones de contacto que permite tener en cuenta una capa rígida que exista entre caras de elementos en contacto. Puede tener diversas aplicaciones, por ejemplo, pensemos en un modelo que tenga dos superficies metálicas en contacto y una de ellas tenga un revestimiento cerámico. Si la rigidez del material cerámico no es lo bastante significativa como para incluirla en el análisis, entonces no es necesario discretizarla, pero el espesor que añade la capa cerámica a la cara metálica pude ser importante cuando se resuelva el problema de contacto.

La distancia OFFSET también se utiliza para estudiar interferencias en problemas de zunchado cuando se modelizan como caras coincidentes. El valor del OFFSET es precisamente el zunchado o interferencia de contacto entre cuerpos. La ventaja es que tanto el radio del eje como del anillo es exactamente el mismo, pudiendo estudiar rápidamente el efecto de diferentes valores de zunchado si necesidad de modificar la geometría ni mallar de nuevo, toda una ventaja!!. Por supuesto, en este caso utilizamos el parámetro INIPENE=3, así eliminamos interferencias no deseadas …

La siguiente imagen muestra la deformada (exagerada!!) y las tensiones de vonMises (MPa) de zunchado obtenidas mallando con elementos lineales 3-D sólidos hexaédricos CHEXA de 8-nodos considerando un OFFSET = 0.05 mm: la calidad de los resultados es excelente, y el tiempo de cálculo y los recursos de memoria RAM utilizados mínimos!!.

EN RESUMEN …

En la siguiente tabla tenéis compiladas las pruebas realizadas: a destacar la buena precisión de los resultados obtenidos por el elemento tetraédrico parabólico CTETRA de 10-nodos de NX NASTRAN, a costa claro está del tiempo de cálculo y consumo de recursos de memoria RAM, y por supuesto la grata sorpresa del uso del parámetro OFFSET en regiones de contacto que ofrece grandes posibilidades para “jugar” con diferentes valores de zunchados, y le saca partido al uso de elementos lineales CHEXA de 8-nodos sin apenas penalizar la precisión de los resultados, manteniendo una velocidad de cálculo elevada y reducidos recursos de memoria RAM — una joya!!.

Número
de Nodos y
Elementos
URES
máx.
(mm)
vMises
máx.
(MPa)
Tiempo
de
Cálculo
HEX8 15875 nodos
13213 elem.
(46000 gdl)
0.0845 21.2 0:1:15
HEX20 60708 nodos
13213 elem.
(177500 gdl)
0.0527 11.01 0:4:45
TET10 91654 nodos
61328 elem.
(268950 gdl)
0.0527 10.54 0:7:0
HEX8 +
OFFSET
15875 nodos
13213 elem.
(46000 gdl)
0.0529 10.71 0:0:25

Si quieres repetir este tutorial en tu propio ordenador pídenos los modelos con la geometría de entrada y te lo remitimos por e-mail, es un servicio gratuito y exclusivo para nuestros clientes de IBERISA.

Saludos,
Blas.

MEJORA DE RESULTADOS DE CONTACTO LINEAL CON “INIPENE” EN FEMAP y NX NASTRAN

Hola!,
El parámetro “INIPENE” es parte del algoritmo de Contacto Lineal “Superficie-a-Superficie” del solver NX NASTRAN (SOLs 101, 103, 111 y 112) y se usa para controlar el contacto entre regiones que inicialmente se deberían tocar limpiamente sin intereferencias pero que por la naturaleza facetada del mallado por elementos finitos (especialmente en zonas curvadas) algunas caras de elementos pueden tener una ligera penetración (“overlap“) o separación (“gap“) no deseada, sobre todo cuando se usan mallas groseras no cuadráticas (elementos de bajo orden) y nodos no coincidentes.

En la siguiente imagen se muestra la orden BCTPARM que utilizamos en FEMAP y NX NASTRAN para definir la propiedad de contacto lineal “superficie-a-superficie” entre componentes. El parámetro INIPENE nos ofrece las siguientes posibilidades:

  • 0,1..Calculated (valor por defecto): El contacto lineal “superficie-a-superficie” entre componentes se evalúa exactamente tal como se ha mallado la geometría. No se realizará ninguna corrección en caso de existir penetraciones o holguras (“gaps“) entre elementos. Así, por defecto, si existe una interferencia inicial (“overlap“) entre un nodo “contact source” y un segmento “contact target” entonces NX NASTRAN “resolverá” la penetración existente ejecutando las iteraciones de contacto que sean necesarias (hasta un máximo especificado por el parámetro MAXS, por defecto 20). Si la penetración inicial es involuntaria el efecto que se produce es la aparición de “baches” en los bordes del elemento que causan concentraciones de tensiones locales en el análisis de contactos. Esta opción es la más adecuada para definir contactos entre caras planas.
  • 2..Calculated/Zero Penetration: Las penetraciones iniciales se eliminan, es decir, se hace un “reset” de la penetración a una nueva condición inicial en la cual no existen interferencias.
  • 3..Zero GAP/Penetration: Tanto las penetraciones como las holguras iniciales se eliminan, es decir, se hace un “reset” de holguras y penetraciones a una nueva condición inicial en la cual no existen interferencias. Esta opción es la más adecuada para contactos entre superficies curvadas.

La siguiente imagen muestra los efectos por penetraciones iniciales no deseadas: aparición de concentración de tensiones locales muy severas, de carácter artificial, que caso de sumarse a las tensiones por cargas de servicio desvirtuarán por completo los resultados obtenidos mediante un análisis por elementos finitos con contactos “superficie-a-superficie“, así que ojo!! — ¿OK?.

En el siguiente vídeo tenéis explicado un simple ejemplo donde se muestra el uso correcto del parámetro INIPENE para evitar efectos no deseables en el análisis de problemas de contacto lineal “superficie-a-superficie” — espero que os sirva!!

Si quieres repetir este tutorial en tu propio ordenador pídenos los modelos con la geometría de entrada y te lo remitimos por e-mail, es un servicio gratuito y exclusivo para nuestros clientes de IBERISA.

Descargar vídeo (81 MB, 15 min.): http://www.megaupload.com/?d=8HXLS7DA

Saludos,
Blas.

25.- ANÁLISIS DE FRECUENCIAS (SOL103) DE UN ENSAMBLAJE CON CONTACTOS “SURFACE-TO-SURFACE”

Hola!,
Más de una vez los usuarios de FEMAP y NX NASTRAN me han hecho la siguiente pregunta: ¿Cómo realizar un análisis dinámico de frecuencias (SOL103) de un ensamblaje considerando el contacto “superficie-a-superficie” entre piezas permitiendo que los componentes se desplacen entre sí pero que no penetren unos con otros?. Con NX NASTRAN no hay problema: el solver permite realizar lo que se conoce como un “pre-stiffness modal analysis” a través del comando STATSUB calculando la matriz de rigidez diferencial que incluye la matriz de contacto (función ya disponible en NX Nastran V5.0 desde Abril 2007, ver http://www.iberisa.com/productos/nxnastran/nx_nastran_v5.htm).

MODOS NORMALES

Las siguientes imágenes corresponden a los primeros modos de vibración del ensamblaje sin considerar ningún tipo de contacto, se aprecia la existencia de penetración libre entre componentes.

Mode#1 = 1190.027 Hz

Mode#3 = 1456.516 Hz

MODOS CON CONTACTO

En las siguientes imágenes se muestran animados los modos de vibración #1 y #3 del ensamblaje considerando el contacto “superficie-a-superficie” sin penetración. Además de evidenciarse una forma del modo diferente, el valor numérico de la frecuencia (Hz) de los modos con contacto es notablemente superior (f1=1728 Hz con contacto vs. f1=1190 Hz sin contacto), por tanto a igualdad de masa se demuestra que la rigidez es superior en el modelo considerando el contacto “superficie-a-superficie“.

Mode#1 = 1728.475 Hz

Mode#3 = 2377.522 Hz

El procedimiento aquí explicado abre la puerta a realizar cálculos de frecuencias (SOL103) considerando no sólo contacto “superficie-a-superficie”, sino también ver el efecto de las cargas de tracción o compresión en el comportamiento modal de la estructura, capturando el efecto de rigidización por tensión (stiffening effect) o debilitamiento por cargas de compresión (softening effect).

En el siguiente vídeo explico la forma de hacerlo en FEMAP V10.3, espero que os sirva!!.

Descargar vídeo (242 MB, 27 min.): http://www.megaupload.com/?d=78PM37CT

Saludos,
Blas.