Métodos de Mallado por Elementos Finitos de una Celosía en FEMAP

El objetivo de esta publicación es enseñar cómo mallar en FEMAP V2020.1 una estructura metálica de celosía cuyas diagonales están unidas a los largueros principales mediante cartelas atornilladas.

Se utilizarán dos planteamiento diferentes de mallado para resolver el problema (se conoce en inglés como “Meshing Approach“): un mallado local bajando al detalle de la unión atornillada entre largueros y diagonales pero que conlleva un coste de preparación de la geometría y mallado importante, y un mallado global aprovechando las propiedades de unión articulada de los elementos CROD que permite crear de forma rápida y eficiente el modelo de elementos finitos en una fracción del tiempo del modelo local.

Al final evaluaremos la bondad de ambos métodos de mallado comparando los resultados obtenidos a partir de un análisis de frecuencias y modos de vibración realizado con el solver Simcenter Nastran (SOL103) y podremos valorar las ventajas e inconvenientes de cada método, yo creo que vamos a llevarnos una grata sorpresa!!.

Método#1: Mallado Local

Básicamente consiste en utilizar las siguientes técnicas de mallado explicados en detalle en el vídeo:

  • Se generan superficies intermedias (MIDSURFACES) para las placas de amarre de espesor 12 mm soldadas a los largueros principales y de las placas del mismo espesor soldadas a los extremos de las diagonales para mallar con elementos 2-D Shell primando el mallado mayoritario con cuadriláteros CQUAD4 de 4-nodos de mayor precisión y exactitud de resultados frente a triángulos CTRIA3 de 3-nodos cuya utilización se debe limitar al máximo en la medida de lo posible
    • Para facilitar el mallado exclusivo con elementos 2-D Shell CQUAD4 se debe partir la geometría de superficies medias creando regiones regulares de 4 lados, un proceso que puede ser laborioso y costoso en tiempo si las superficies presentan formas complejas o rebuscadas, pero los beneficios obtenidos en calidad de mallado y precisión de resultados hace que en general merezca la pena.
  • Los tornillos M20 de unión entre placas base y diagonales se mallan con una mezcla de elementos viga 1-D CBEAM + elementos rígidos RBE2. Para saber más sobre los detalles de mallado de este tipo de uniones atornilladas te recomiendo consultar mi blog en la siguiente dirección:
    https://iberisa.wordpress.com/2015/10/13/rbe2-vs-rbe3-on-femap-with-nx-nastran/
  • Las diagonales Ø50 mm se mallan con elementos viga 1-D CBEAM, “mergeando” nodos con los elementos Shell de los extremos de placa, proyectando la curva de centro de la viga sobre la superficie de la placa, de esta forma aseguramos la continuidad de la malla.
    • Los elementos viga CBEAM y shell CQUAD4 son elementos “compatibles“, ambos tienen 6 GDL por nodo (TX, TY, TZ, RX, RY & RZ) por tanto al mergear nodos tenemos una unión que transmite perfectamente desplazamientos y rotaciones, simulando con bastante precisión el comportamiento real de unión rígida obtenida mediante soldadura entre diagonal y placas de extremos.
  • Los largueros principales Ø95 mm se mallan con elementos viga 1-D CBEAM, mergeando nodos con los elementos 2-D Shell de la placa base de forma similar a cómo se ha explicado anteriormente en el caso de diagonales y placas extremo.
  • Contacto NO PENETRATION superficie-a-superficie: en el caso de aplicar cargas de pretensado en los tornillos M20 se deberá considerar incluir en el modelo de Elementos Finitos el contacto de no penetración entre las placas atornilladas, definiendo la propiedad de contacto, regiones y conectores, tal como explico en el video.

–ooOoo–

Método#2: Mallado Global

En este segundo planteamiento de mallado de una CELOSIA vamos a sacar partido del elemento CROD con el cual mallaremos todas las diagonales de la celosía: es una barra bi-articulada que no tiene grados de libertad de rotación, por tanto no transmite momentos, es ideal para mallar estructuras de celosía ya que los elementos CROD sólo trabajan a tracción-compresión.

El único cuidado que debemos tener es MALLAR CADA BARRA CON UN ÚNICO ELEMENTO CROD, ya que si mallas con más de un elemento tendrás error de cálculo por RIGID BODY MOTION, es decir, la existencia de un mecanismo. Claro!, si mallas con más de un elemento es como simular una cadena con uniones articuladas. Además deberás evitar crear celosías de más de 3 barras (el concepto básico es el triángulo rígido), de lo contrario tendrás un cuadrilátero articulado, y el calculador te dará error de nuevo por mecanismo.
Para saber más sobre los errors del solver Simcenter Nastran visita mi blog en la siguiente dirección:
https://iberisa.wordpress.com/2011/02/20/mensaje-de-error-de-nx-nastran-run-terminated-due-to-excessive-pivot-ratios/

La siguiente imagen muestra la definición de las propiedades del elemento CROD en FEMAP: simplemente debes introducir el área de la sección transversal así como la Constante de Torsión “J”.

La siguiente figura muestra las ecuaciones usadas para calcular la Constante de Torsión “J” para una variedad de secciones transversales:

Definición de la Constante de Torsión “J” para formas geométricas comunes

El Coeficiente de Torsión “C” se usa por Simcenter Nastran para calcular la tensión por torsión de acuerdo con la siguiente ecuación:

–ooOoo–

Comparación de Resultados

La siguiente imagen muestra el 1er modo de vibración a flexión de la celosía mallada utilizando el LOCAL MESHING APPROACH, mallando en detalle la unión atornillada entre diagonales y largueros: la frecuencia fundamental de vibración de la celosía tiene un valor de 10.5 Hz, es muy flexible, la frecuencia natural está muy por debajo de los 33 Hz considerada como estructura rígida, por lo tanto el factor de amplificación dinámica (Dynamic Amplification Factor, DAF) que puede tener la estructura en caso de no existir ningún arriostramiento lateral (es la clave en este tipo de estructuras) podría ser ciertamente muy elevado.

La siguiente imagen muestra la animación del 1er modo de vibración de la celosía mallada utilizando un GLOBAL MESHING APPROACH, mallando las diagonales de la celosía con un único elemento CROD: la frecuencia fundamental de la celosía tiene un valor de 11 Hz.

–ooOoo–

En Resumen …

Una imagen vale más que mil palabras: el modelo global de la celosía a base de elementos CBEAM + CROD creado de forma rápida en una fracción de tiempo del modelo local proporciona una precisión excelente, tanto el valor de la frecuencia fundamental de resonancia como la forma del 1er modo de vibración de flexión coinciden plenamente con el modelo local mallado en detalle con elementos Shell CQUAD4 + CBEAM + RBE2 + CONTACTOS Superficie-a-Superficie, así que merece la pena aprender la lección:

Siempre tu primer modelo de elementos finitos debe ser lo más sencillo posible, te dará información muy importante que te permitirá tomar decisiones de forma rápida sobre cómo afrontar el proyecto, te permitirá comprobar si el concepto de diseño usado es válido, si en base a los resultados preliminares pudiera ser necesario o no realizar análisis dinámicos avanzados del tipo Respuesta en Frecuencia, Random Vibration o No Lineales para comprobar problemas de inestabilidad por pandeo, etc..

Pues nada más de momento, espero que este artículo os resulte útil e interesante, gracias!!.
Saludos,
Blas.

• BEAM CROSS SECTION using SURFACE with REFERENCE POINT on FEMAP

En FEMAP desde hace varias versiones tenemos disponible una utilidad muy interesante para generar las propiedades de la Sección Transversal de elementos 1-D tipo viga CBAR/CBEAM a partir de la geometría CAD 3-D Sólida que permite crear el  PUNTO DE REFERENCIA a la vez que seleccionamos la superficie correspondiente a la sección transversal de la viga sobre la geometría CAD 3-D. Para que se active esta opción durante la creación de la Sección Transversal  de Vigas deberás seleccionar en FEMAP tanto el método Standard como Shape = General Section.

beam-cross-section-definition

El Punto de Referencia sólo se usa cuando se asignan los atributos de mallado a curvas usando la orden Mesh > Mesh Control > Attributes along Curve, siendo una manera cómoda de definir automáticamente el #OFFSET del centro de cortadura en secciones no simétricas.

mesh-attributes-along-curve

Aquí os dejo un vídeo explicando las ventajas de utilizar el PUNTO DE REFERENCIA a la hora de prescribir los attributos en curvas para mallar con elementos CBAR/CBEAM. Se trata de un ensamblaje de Aluminio 6066 (T6) compuesto por una placa de espesor 2.5 mm reforzada con perfiles tubulares de dimensiones 25x15x2.5 mm que se desean mallar con elementos 1-D viga CBEAM.

dimensiones-modelo

Se crea la superficie media de la placa para mallar con elementos 2-D Shell CQUAD4.

midsurface

Modelo final con la placa mallada con elementos 2-D Shell CQUAD4 y las vigas malladas con elementos CBEAM. La curva utilizada para mallar las vigas es la misma curva de la superficie media, por tanto los elementos CBEAM comparten nodos con los elementos CQUAD4. La clave está en utilizar como REFERENCE POINT el punto situado en la curva de la superficie media.

malla-shell-beam

Y aquí tenéis el vídeo con el ejemplo explicado paso-a-paso:

Saludos,
Blas.

Datos de Contacto de IBERISA (Spain)

2-D TRANSITION MESH in FEMAP

logo_femap_251x95Voy a enseñaros algunas de las técnicas de Transición de Mallado 2-D que se pueden realizar en FEMAP sin problemas y que he utilizado recientemente en algunos proyectos con excelentes resultados.

Por ejemplo, la siguiente imagen muestra diferentes ejemplos de transición de malla (de izquierda a derecha) utilizando elementos 2-D triangulares. Tengo que decir que yo no soy muy amigo de usar elementos triangulares, pero esta técnica en especial me gusta porque la transición de malla es muy regular, y entendiendo la técnica de progresión ofrece muchas posibilidades para ajustarse a las necesidades de divisiones y nº de elementos de cada caso en particular.

  • CASO#1: Pasar de 10 a 5 elementos: la clave está en definir en los laterales 5 divisiones, en ese caso la malla resultante presenta el aspecto de la figura nº1. No hace falta definir ningún MESH > MESH CONTROL > MESHING APPROACH especial, no, el truco está en prescribir en los TRES BORDES LATERALES la MITAD de elementos que tenga el extremo director. Es decir: si tenemos A=10 elementos en el borde izquierdo, simplemente prescribiendo A/2=10/2=5 en los otros tres bordes obtendremos la malla de la figura nº1. Esto es aplicable para cualquier valor “par” de A.
  • CASO#2: Pasar de 10 a 4 elementos, con 6 elementos en el lateral. La clave está en definir en los laterales 6 divisiones, en ese caso la malla resultante presenta el aspecto de la figura nº1. Ya véis la progresión: si defines “n” divisiones en el borde lateral derecho, deberás prescribir “n+1” divisiones en los bordes laterales superior e inferior, siendo n=4,3,2
  • CASO#3: Pasar de 10 a 3 elementos, con 7 elementos en el lateral. La clave está en definir en los bordes laterales superior e inferior 7 divisiones.
  • CASO#4: ¿Y si el nº de divisiones en el borde izquierdo es impar?. Pues también funciona, aquí tenéis el ejemplo: Pasar de 9 a 4 elementos, con 5 divisiones en el lateral. 
  • CASO#5: Pasar de 9 a 3 elementos, con 6 divisiones en el lateral. La clave está en definir en los bordes laterales superior e inferior 6 divisiones.

transition-mesh-triangulos

Continue reading

FEMAP SYMPOSIUM 2013

FEMAP SYMPOSIUM 2013 Aquí tenéis recogidas todas y cada una de las interesantes presentaciones publicadas durante la celebración del pasado “1er FEMAP SYMPOSIUM 2013” realizado los días 26 y 27 de Junio de 2013 en Cincinati, OHIO (USA). Me parece una idea excelente celebrar este tipo de eventos ya que reúne a ingenieros y usuarios de FEMAP de todas las partes del mundo y permite compartir ideas y experiencias no sólo entre usuarios sino también conocer personalmente al equipo de desarrollo de FEMAP, que en mi opinión es magnífico, son unos genios y excelentes personas!!. Continue reading

37.- FEMAP TIPS & TRICKS: Extruir Elementos

El vídeo enseña una técnica muy interesante de generar por extrusión mallas 2-D de elementos Shell CQUAD4 a partir del contorno exterior de una malla 2-D utilizando la orden “Mesh > Extrude > Element Face ..”, sin necesidad de que exista ninguna geometría de base ni ninguna malla 1-D en el contorno exterior.

El “truco” está en utilizar el método de selección de caras como “Adjacement Faces: tras seleccionar gráficamente una de las caras laterales haciendo “click” con el ratón en cualquier cara (arista) del contorno exterior de un elemento 2-D la clave está en dar un ángulo de tolerancia mayor de 90º (por ejemplo 99) para que seleccione TODAS las caras de los elementos exteriores del contorno.

Saludos,
Blas.

23.- FEMAP TIPS & TRICKS — INSPECCIÓN VISUAL DE LA CALIDAD DE LA MALLA

Cuando FEMAP termina de mallar un sólido con elementos Tetraédricos 3-D genera en la ventana de mensajes un informe sobre la calidad de la malla, pero como una imagen vale más que mil palabras en este vídeo podréis aprender cómo visualizar en pantalla los elementos que presentan la máxima distorsión y peor calidad, de esta forma el usuario siempre puede evaluar la calidad de la malla antes de ejecutar el análisis por elementos finitos y así garantizar una buena precisión de los resultados.

Saludos,
Blas.