43.- Nueva Versión de NX NASTRAN V8.5 (Octubre 2012)

Es un placer dar a conocer que el pasado 29 de Octubre de 2012 se hizo público el lanzamiento al mercado mundial de la nueva versión del “solver” de Análisis por Elementos Finitos NX Nastran V8.5, el cual llega a nuestras manos con importantes novedades y notables mejoras de prestaciones en velocidad de cálculo y tipos de elementos, nuevas disciplinas de análisis y simulación de procesos, así como una lista de corrección de errores. El software está ya disponible para descarga desde el servidor FTP de SIEMENS PLM en la siguiente dirección:
http://ftp.ugs.com/download.php

Continue reading

41.- FEMAP MIDSURFACE MODELING: Método “OFFSET”

Midsurface Modeling” se denomina así el proceso de extracción de la superficie media entre dos caras paralelas de la pared de un sólido con el objetivo de preparar la geometría para mallar con elementos Shell 2-D CQUAD4 en orden a reducir la complejidad del modelo y aumentar la precisión y exactitud del Análisis por Elementos Finitos.

Es un recurso muy potente, versátil y de máxima importancia, particularmente en análisis avanzados (lineales y no lineales) donde, por ejemplo, sería imposible abordar un problema de Análisis No Lineal Dinámico Transitorio Implícito (SOL601,129) con cientos de steps en caso de mallar con elementos sólidos tetraédricos CTETRA, el tamaño de la base de datos sería enorme, probablemente cientos de Gigas, habría que disponer de cientos de GB de memoria RAM para poder abrir el modelo debido al enorme tamaño de la base de datos resultante. Por esta razón es crítico conocer bien cómo crear superficies medias de forma rápida y eficiente para mallar con elementos Shell CQUAD4, en la práctica profesional del experto analista son los elementos más utilizados.

En FEMAP existen numerosas funcionalidades para la creación más o menos automática de superficies medias, las dos más importantes son:

  • Geometry > Midsurface > Automatic…“: agrupa en un mismo comando las tres órdenes siguientes de creación semi-manual de una superficie media: Generate, Intersect y Cleanup. La orden solicita que se introduzca una distancia máxima de búsqueda de pares de superficies, crea las superficies medias, las recorta y borra los trozos que sobran.

Las tareas que lleva a cabo esta orden son las siguientes:

Midsurface Auto
xxxx Surface(s) Selected…
Examining Surfaces…
Extracting Mid-Surfaces…
Removing Duplicates…
Intersecting Mid-Surfaces…
Identifying Unnecessary Mid-Surfaces…
Deleting Unnecessary Mid-Surfaces…

  • Geometry > Midsurface > Offset Tangent Surfaces…“: se utiliza preferentemente sólo con sólidos de espesor constante. La orden pide seleccionar una cara, busca todas las que sean tangentes en base a una tolerancia dada y genera la superficie media. Tiene una peculiaridad muy importante: las superficies medias generadas con el método OFFSET ya están “cosidas“, todas forman un único cuerpo, lo cual facilita el posterior mallado.

La utilización de una u otra orden dependerá en general del tipo de geometría de partida. Por ejemplo, en el siguiente modelo CAD 3-D sólido existe una intersección en T que condiciona como más adecuado el uso del método “Automatic” en vez de “Offset“.

La siguiente imagen muestra la malla generada a base de elementos Shell 2-D CQUAD4. Sobre dicha malla se representa el reparto de la calidad de los elementos utilizando el parámetro de distorsión de la malla ALTERNATE TAPER (se considera fallo cuando Q4_TAPER > 0.5) que en general es el parámetro de control de distorsión de la malla más exigente de NX Nastran con los elementos Shell CQUAD4.

La siguiente imagen muestra la distribución de la calidad de la malla en el modelo de elementos finitos utilizando el parámetro de distorsión de los elementos en base a la relación de aspecto (ASPECT RATIO, AR). Se considera fallo cuando el valor máximo es AR > 10.

Si quieres repetir este tutorial en tu propio ordenador pídenos los modelos con la geometría de entrada y te lo remitimos por e-mail, es un servicio gratuito y exclusivo para nuestros clientes de IBERISA.

Saludos,
Blas.

35.- EJEMPLOS DE APLICACIÓN: ORBEA Rallon X10

Hola!,
Es un lujo poder combinar la ingeniería y el placer por los Elementos Finitos usando FEMAP y NX NASTRAN con el amor por la bicicleta de montaña MTB, todo ello se ha visto reunido en este “ejercicio de ingeniería” realizado con la ORBEA Rallon X10, una máquina perfecta para practicar la especialidad Enduro en MTB con descensos rápidos en la montaña.

La siguiente imagen muestra la malla por elementos finitos del cuadro a partir del modelo CAD 3-D utilizando elementos Shell 2-D CQUAD4 y elementos sólidos 3-D CHEXA de 8-nodos. La capacidad de FEMAP de creación automática de superficies medias (midsurfacing) a partir de modelos sólidos es vital a la hora de afrontar el mallado con elementos Shell de componentes de pequeño espesor y gran longitud. Masivamente he utilizado la capacidad de FEMAP y NX NASTRAN de unir mallas incompatibles Shell-Sólido mediante la opción “GLUE edge-to-face” y mallas no coincidentes Sólido-Sólido con “GLUE Face-to-face“, lo cual ofrece una total libertad de mallado y permite concentrarnos en obtener mallas de máxima calidad y mínima distorsión. El uso de elementos hexaédricos permite reducir el tamaño del modelo al máximo manteniendo una elevada precisión de resultados a un coste muy reducido gracias a las capacidades de mallado hexaédrico de FEMAP (haz click en la imagen para verla en su tamaño completo).

La siguiente imagen muestra el detalle de la unión entre elementos sólidos Tetraédricos 3-D CTETRA de 10-nodos y elementos viga 1-D CBEAM utilizando elementos rígidos RBE2: es un recurso muy interesante que utilizo muy a menudo para reducir el tamaño del modelo en componentes que actúan como una viga, trabajando masivamente a flexión (haz click en la imagen para verla en su tamaño completo).

En la imagen siguiente se muestra de forma comparativa la malla y la geometría de base que hace posible ese mallado tan precioso. Las claves para conseguir mallas de buena calidad son tres: partir, partir y partir!!. Es vital particionar correctamente la geometría, en FEMAP se pueden seguir múltiples caminos para conseguir una malla de calidad, los conceptos son básicos, siempre lo mismo, por eso es importante practicar y aprender bien el concepto ya que las posibilidades son numerosas.

Utilizando mallas sólidas a base de elementos hexaédricos CHEXA de 8-nodos se consiguen dos objetivos: excelente calidad de resultados (especialmente en problemas de contacto) y reducido tamaño del modelo, vital de cara a realizar análisis dinámicos tanto lineales como no lineales (haz click en la imagen para verla en su tamaño completo).


Y por último os dejo un detalle más de mallado: los agujeros en FEMAP no son un problema, podemos incluirlos perfectamente en cualquier malla local con total precisión, tenéis disponibles recursos muy potentes tales como “WASHER” y “PAD” tanto en el MESHING TOOLBOX para actualizar la malla de forma interactiva como en “Geometry > Curve – From Surface“. Las órdenes “Split Point-to-Point“, “Split Point-to-Edge“, etc.. son muy valiosas para dividir la geometría de forma rápida, ¿OK? — a disfrutar!!.

Saludos,
Blas.

30.- TRATADO COMPLETO SOBRE CÓMO RESOLVER PROBLEMAS LINEALES DE “ZUNCHADO” CON FEMAP y NX NASTRAN

Hola!,

Os he preparado un vídeo muy completo sobre cómo calcular con FEMAP y NX NASTRAN las tensiones de vonMises de Zunchado (también conocido como “Snap-Fit“, “Press-Fit“, “Interference-Fit“, “Overlapping“, etc..) por contacto lineal “superficie-a-superficie” que se producen en el montaje de piezas eje-agujero en donde el diámetro del agujero es ligeramente menor que el diámetro del eje. El zunchado se puede realizar por presión (“Press-Fit“) o utilizar un calentador por inducción para dilatar suficientemente la pieza hembra y proceder el montaje sin esfuerzo. Finalmente el conjunto se deja enfriar hasta la temperatura ambiente, garantizando una unión perfecta. El Zunchado por presión (“Press-Fit“) únicamente se puede resolver mediante análisis no lineal avanzado (SOL601/701), aquí os voy a enseñar únicamente cómo simular las tensiones de contacto por zunchado térmico mediante un sencillo análisis estático lineral (SOL101).

Método-1: INTERFERENCIA “EXPLÍCITA”

En el ejemplo propuesto se trata de estudiar las tensiones de zunchado entre un eje de Acero y un casquillo de Nylon. El radio del eje es 0.05 mm mayor que el radio del agujero, y la geometría de base para el mallado presenta dicha interferencia de forma “explícita”.

En la siguiente imagen definimos los parámetros MINDi y MAXDi correspondientes a la mínima y máxima distancia de búsqueda en la cual el solver NX NASTRAN determina inicialmente si la distancia entre caras de elementos pertenecientes a las regiones de contacto “source” y “target” están dentro del umbral para crear elementos de contacto. Estos valores se utilizan sólo una vez, y al principio del análisis estático lineal (SOL101), y sirven para determinar dónde se deben crear inicialmente elementos de contacto. La mínima distancia debe ser negativa y ligeramente mayor del valor de la interferencia, tomaremos por ejemplo MINDi=-0.5mm. Por supuesto, en este caso utilizamos el parámetro INIPENE=0, así el contacto se evalúa tal como se ha modelizado …

Os recuerdo cómo funcionan los contactos lineales en NX NASTRAN: el solver proyecta normales a partir de las caras de los elementos pertenecientes a la región origen (“source” o “slave“) y mira a ver si alguna de esas normales intersecta con caras libres de elementos de la región destino (“target” o “master“). Si la normal proyectada intersecta con una cara de un elemento, y la distancia entre las dos caras está dentro del rango definido por los valores MINDi y MAXDi, entonces se crea un elemento de contacto. Recordar también que el análisis SOL101 se usa en problemas lineales con pequeños desplazamientos y deformaciones, por tanto el nº de elementos de contacto creados inicialmente permanece constante para el resto del análisis, no se actualiza con cada iteración de contacto.

La siguiente imagen muestra la deformada (exagerada!!) y las tensiones de vonMises (MPa) de zunchado obtenidas mallando con elementos lineales 3-D sólidos hexaédricos CHEXA de 8-nodos (bajo orden): la calidad de los resultados tanto de tensiones como desplazamientos deja mucho que desear!!.

La siguiente imagen muestra la deformada (exagerada!!) y las tensiones de vonMises (MPa) de zunchado obtenidas mallando con elementos parabólicos 3-D sólidos hexaédricos CHEXA de 20-nodos: la calidad de los resultados es excelente!!.

Y finalmente la siguiente imagen muestra la deformada (de nuevo exagerada!!) y las tensiones de vonMises (MPa) de zunchado obtenidas mallando con elementos parabólicos 3-D sólidos tetraédricos de alto orden CTETRA de 10-nodos: sorprende la calidad de los resultados, prácticamente al nivel de los elementos hexaédricos CHEXA de 20-nodos!!.

Método-2: OFFSET

El parámetro OFFSET es una opción de las regiones de contacto que permite tener en cuenta una capa rígida que exista entre caras de elementos en contacto. Puede tener diversas aplicaciones, por ejemplo, pensemos en un modelo que tenga dos superficies metálicas en contacto y una de ellas tenga un revestimiento cerámico. Si la rigidez del material cerámico no es lo bastante significativa como para incluirla en el análisis, entonces no es necesario discretizarla, pero el espesor que añade la capa cerámica a la cara metálica pude ser importante cuando se resuelva el problema de contacto.

La distancia OFFSET también se utiliza para estudiar interferencias en problemas de zunchado cuando se modelizan como caras coincidentes. El valor del OFFSET es precisamente el zunchado o interferencia de contacto entre cuerpos. La ventaja es que tanto el radio del eje como del anillo es exactamente el mismo, pudiendo estudiar rápidamente el efecto de diferentes valores de zunchado si necesidad de modificar la geometría ni mallar de nuevo, toda una ventaja!!. Por supuesto, en este caso utilizamos el parámetro INIPENE=3, así eliminamos interferencias no deseadas …

La siguiente imagen muestra la deformada (exagerada!!) y las tensiones de vonMises (MPa) de zunchado obtenidas mallando con elementos lineales 3-D sólidos hexaédricos CHEXA de 8-nodos considerando un OFFSET = 0.05 mm: la calidad de los resultados es excelente, y el tiempo de cálculo y los recursos de memoria RAM utilizados mínimos!!.

EN RESUMEN …

En la siguiente tabla tenéis compiladas las pruebas realizadas: a destacar la buena precisión de los resultados obtenidos por el elemento tetraédrico parabólico CTETRA de 10-nodos de NX NASTRAN, a costa claro está del tiempo de cálculo y consumo de recursos de memoria RAM, y por supuesto la grata sorpresa del uso del parámetro OFFSET en regiones de contacto que ofrece grandes posibilidades para “jugar” con diferentes valores de zunchados, y le saca partido al uso de elementos lineales CHEXA de 8-nodos sin apenas penalizar la precisión de los resultados, manteniendo una velocidad de cálculo elevada y reducidos recursos de memoria RAM — una joya!!.

Número
de Nodos y
Elementos
URES
máx.
(mm)
vMises
máx.
(MPa)
Tiempo
de
Cálculo
HEX8 15875 nodos
13213 elem.
(46000 gdl)
0.0845 21.2 0:1:15
HEX20 60708 nodos
13213 elem.
(177500 gdl)
0.0527 11.01 0:4:45
TET10 91654 nodos
61328 elem.
(268950 gdl)
0.0527 10.54 0:7:0
HEX8 +
OFFSET
15875 nodos
13213 elem.
(46000 gdl)
0.0529 10.71 0:0:25

Si quieres repetir este tutorial en tu propio ordenador pídenos los modelos con la geometría de entrada y te lo remitimos por e-mail, es un servicio gratuito y exclusivo para nuestros clientes de IBERISA.

Saludos,
Blas.

MEJORA DE RESULTADOS DE CONTACTO LINEAL CON “INIPENE” EN FEMAP y NX NASTRAN

Hola!,
El parámetro “INIPENE” es parte del algoritmo de Contacto Lineal “Superficie-a-Superficie” del solver NX NASTRAN (SOLs 101, 103, 111 y 112) y se usa para controlar el contacto entre regiones que inicialmente se deberían tocar limpiamente sin intereferencias pero que por la naturaleza facetada del mallado por elementos finitos (especialmente en zonas curvadas) algunas caras de elementos pueden tener una ligera penetración (“overlap“) o separación (“gap“) no deseada, sobre todo cuando se usan mallas groseras no cuadráticas (elementos de bajo orden) y nodos no coincidentes.

En la siguiente imagen se muestra la orden BCTPARM que utilizamos en FEMAP y NX NASTRAN para definir la propiedad de contacto lineal “superficie-a-superficie” entre componentes. El parámetro INIPENE nos ofrece las siguientes posibilidades:

  • 0,1..Calculated (valor por defecto): El contacto lineal “superficie-a-superficie” entre componentes se evalúa exactamente tal como se ha mallado la geometría. No se realizará ninguna corrección en caso de existir penetraciones o holguras (“gaps“) entre elementos. Así, por defecto, si existe una interferencia inicial (“overlap“) entre un nodo “contact source” y un segmento “contact target” entonces NX NASTRAN “resolverá” la penetración existente ejecutando las iteraciones de contacto que sean necesarias (hasta un máximo especificado por el parámetro MAXS, por defecto 20). Si la penetración inicial es involuntaria el efecto que se produce es la aparición de “baches” en los bordes del elemento que causan concentraciones de tensiones locales en el análisis de contactos. Esta opción es la más adecuada para definir contactos entre caras planas.
  • 2..Calculated/Zero Penetration: Las penetraciones iniciales se eliminan, es decir, se hace un “reset” de la penetración a una nueva condición inicial en la cual no existen interferencias.
  • 3..Zero GAP/Penetration: Tanto las penetraciones como las holguras iniciales se eliminan, es decir, se hace un “reset” de holguras y penetraciones a una nueva condición inicial en la cual no existen interferencias. Esta opción es la más adecuada para contactos entre superficies curvadas.

La siguiente imagen muestra los efectos por penetraciones iniciales no deseadas: aparición de concentración de tensiones locales muy severas, de carácter artificial, que caso de sumarse a las tensiones por cargas de servicio desvirtuarán por completo los resultados obtenidos mediante un análisis por elementos finitos con contactos “superficie-a-superficie“, así que ojo!! — ¿OK?.

En el siguiente vídeo tenéis explicado un simple ejemplo donde se muestra el uso correcto del parámetro INIPENE para evitar efectos no deseables en el análisis de problemas de contacto lineal “superficie-a-superficie” — espero que os sirva!!

Si quieres repetir este tutorial en tu propio ordenador pídenos los modelos con la geometría de entrada y te lo remitimos por e-mail, es un servicio gratuito y exclusivo para nuestros clientes de IBERISA.

Descargar vídeo (81 MB, 15 min.): http://www.megaupload.com/?d=8HXLS7DA

Saludos,
Blas.

VISOR JT2Go PARA FEMAP V10.3

Hola!,
JT2Go es un visor personal 2D/3D gratuito que permite visualizar formatos *.jt, *.cgm y *.tif y ayudar en las tareas de colaboración entre diferentes equipos de desarrollo. Está basado en Teamcenter, el software de gestión y visualización de ciclo de vida del producto desarrollado por SIEMENS PLM. La nueva versión de FEMAP V10.3 permite exportar el modelo en formato JT.

1.- La ventana de proyecto muestra información relacionada con el modelo 3D o la imagen 2D activa. 2.- La ventana de Vista muestra el modelo 3D o la imagen 2D. Cuando abres ficheros múltiples cada imagen o modelo aparece en ventanas separadas. 3.- La barra de Estado muestra información sobre la sesión actual, incluyendo el progreso de la carga de modelo y la memoria disponible.

JT2Go está diseñado para conectar clientes/provedores y compartir revisiones de diseño, informes de cálculo por elementos finitos, pedir presupuestos, o cualquier otro proceso que requiera compartir prototipos digitales CAD/CAE 3D. El formato del estándar abierto JT es el lenguaje 3D común para la visualización, colaboración e interoperatividad PLM seleccionado por la mayoría de las compañías de desarrollo de producto líderes en todo el mundo. Puedes descargar JT2Go en la siguiente dirección:
http://www.JT2Go.com

En el siguiente vídeo explico la forma de exportar resultados en formato JT desde FEMAP V10.3, espero que os sirva!!.

Descargar vídeo (87.2 MB, 9 min.): http://www.megaupload.com/?d=7U0CK3WL

Saludos,
Blas.

23.- FEMAP TIPS & TRICKS — INSPECCIÓN VISUAL DE LA CALIDAD DE LA MALLA

Cuando FEMAP termina de mallar un sólido con elementos Tetraédricos 3-D genera en la ventana de mensajes un informe sobre la calidad de la malla, pero como una imagen vale más que mil palabras en este vídeo podréis aprender cómo visualizar en pantalla los elementos que presentan la máxima distorsión y peor calidad, de esta forma el usuario siempre puede evaluar la calidad de la malla antes de ejecutar el análisis por elementos finitos y así garantizar una buena precisión de los resultados.

Saludos,
Blas.