FEMAP FORCED FREQUENCY RESPONSE

En el propio FEMAP tenemos disponible desde la versión 10.2 (Noviembre de 2010) una “joya” desconocida para muchos usuarios: la posibilidad de realizar “con el paquete básico” de FEMAP un Análisis Dinámico de Respuesta Forzada a partir de los resultados de frecuencias y modos de vibración obtenidos con “cualquier” solver de Análisis por Elementos Finitos del mercado. Los resultados de respuesta dinámica calculados por FEMAP son exactamente los mismos que se obtendrían mediante un Análisis Dinámico Modal de Respuesta en Frecuencias utilizando el módulo dinámico avanzado de NX NASTRAN (SOL111). La orden la tenéis en FEMAP en “Model > Output > Forced Response“.

Antes de usar esta orden deberás tener preparada la siguiente información:

  • Un Set de Carga: sólo se pueden definir cargas del tipo Fuerza, Momento o Presión. Aclarar que cargas como aceleracioón de la base (enforced base motion) no se pueden aplicar con esta orden, para eso se necesita disponer de licencia para el módulo de análisis dinámico avanzado de NX NASTRAN, OK?.
  • Función de Amortiguamiento: puedes crearla “al vuelo” dentro de la propia orden.
  • Resultados del Cálculo Modal: la base de datos con los resultados del análisis de modos normales.
  • La Lista de Frecuencias: debe ser creada en la propia orden.

Para entender el funcionamiento de la orden FORCED RESPONSE vamos a estudiar este sencillo ejemplo de un Soporte donde queremos obtener la respuesta estructural que experimenta el centro de gravedad del motor bajo la excitación de una carga de amplitud unitaria en el intervalo de frecuencias entre 0 Hz y 500 Hz (en este rango tenemos los 7 primeros modos de vibración del Soporte). Utilizaremos un amortiguamiento estructural de valor G=0.04 (lo que equivale a un amortiguamiento crítico ζ = G/2 = 0.04/2 = 0.02, es decir, un 2% de amortiguamiento crítico).

bracket-forced-response

La siguiente imagen muestra el Modelo de Elementos Finitos del Soporte metálico creado en FEMAP V11.2.2 a base de elementos 2-D Shell CQUAD4 de espesor 2.5 mm y material Aluminio Al 2011 (T3). La masa del motor de valor 2.5 kg se condensa en su CdG mediante un elemento masa 0-D CONM2, utilizando un elemento RBE3 para su unión al Soporte. La carga unitaria de excitación FY=1N se aplica en el centro del agujero y se transmite a la estructura del Soporte utilizando un elemento RBE3. El Soporte está unida a la base fija mediante 4 tornillos que se simulan utilizando elementos rígidos RBE2 restringiendo únicamente los GDL de translación (TX=TY=TZ=0).

bracket-forced-response-fe-model

Tras ejecutar el Análisis de Frecuencias y modos de vibración de la estructura utilizando el solver NX NASTRAN (SOL103) vemos que el valor de la frecuencia fundamental de vibración de la estructura es f1 = 40.81 Hz:

model-info-tree

Si animamos el modo#1 vemos la forma del Modo de vibración, claramente un movimiento de flexión en el plano Z-Y:

mode1-animated

Utilizando el Factor de Participación Modal de la Masa que calcula NX NASTRAN siempre que ejecutamos un análisis de modos de vibración (SOL103) podemos ver en FEMAP la contribución modal de la masa: la siguiente imagen nos muestra la SUMA DE MASA MODAL, modo-a-modo, donde se aprecia claramente cómo el Modo#1 captura más del 85% de la masa en la dirección del eje Y (verde). Esta información es vital en caso de realizar un Análisis Modal de Respuesta en Frecuencias (SOL111) ya que para que el análisis dinámico tenga una excelente precisión se deben incluir en el cálculo dinámico tantos modos de vibración como sean necesarios para asegurar la captura de mínimo el 85% de la masa en la dirección de la excitación.

MODAL-MASS-SUM

La siguiente imagen nos muestra la FRACCIÓN DE MASA MODAL, modo-a-modo, donde se aprecia claramente cómo los tres primeros modos capturan la mayor parte de la masa por encima del 85% en las tres direcciones, la fracción de masa que queda para el resto de modos (hasta el modo#10) es mínima, por lo tanto utilizar los 10 primeros modos es suficiente.

MODAL-MASS-FRACTION

Definición de la Excitación

Lo primero que debemos hacer antes de usar la orden FORCED RESPONSE es definir en FEMAP una excitación en forma de carga de presión o fuerza nodal (no valen cargas de aceleración o movimientos de la base) mediante la creación de un Caso de Carga válido. Una simple fuerza periódica de “magnitud unitaria” en la dirección de la excitación es lo adecuado, tal como muestra la siguiente imagen donde se aplica una fuerza periódica FY=1N en el rango de frecuencia entre 0 Hz y 1000 Hz (el rango 0-1000 Hz es lo mismo que definir una función entre 0-1 Hz ya que NX NASTRAN la extrapola al infinito):

loading

Definición del Amortiguamiento

Otro aspecto importante de la orden FORCED RESPONSE es definir el tipo de amortiguamiento de la estructura: podemos definir a nivel global un amortiguamiento estructural, o definir una tabla de amortiguamiento modal, es decir, que el amortiguamiento sea variable con la frecuencia.

  • Modal Damping Table:
    • La Tabla de Amortiguamiento Modal puede ser una de las siguientes funciones:
      • 6.. Structural Damping vs. Freq.“: es el amortiguamiento estructural, G
      • 7.. Critical Damping vs. Freq.“: es la fracción del amortiguamiento crítico, ζ
      • 8.. Q Damping vs. Freq.“: es el factor de calidad o magnificación, Q
    • La relación entre los valores anteriores es la siguiente:
      • ζ = β/βc (fracción del amortiguamiento crítico).
      • G = 2ζ
      • Q = 1/G

Cualquiera de las funciones anteriores se pueden definir “al vuelo” dentro o fuera de la orden FORCED RESPONSE. Además, los valores de la Tabla de Amortiguamiento Modal pueden ser definidos como Viscoso (por defecto) o Estructural. Si se establece el valor como Estructural es equivalente a usar la opción PARAM,KDAMP,-1 en el BULK DATA del solver NX NASTRAN.

  • Overall Structural Damping:
    • Por defecto está en OFF. Si se activa significa que vamos a definir a nivel global el amortiguamiento estructural G del modelo de Elementos Finitos. El valor varía entre 0.0 y 1.0. Un valor típico es G = 2ζ = 2.0 * (fracción de amortiguamiento crítico); por ejemplo, si ζ = 0.02 (es decir, 2% de amortiguamiento crítico) entonces G = 2*0.02 = 0.04. Equivale a definir la opción PARAM,G en el BULK DATA de NX NASTRAN.

step1

Lista de Frecuencias

Primero seleccionamos los modos que vamos a incluir en la generación de la respuesta de la estructura y seguidamente hacemos clic en CREATE para generar la lista de frecuencias. Aquí tenemos varias opciones:

  • 0..FREQ: Permite definir un valor en Frequency1 (primer valor del rango), Frequency2 (último valor del rango), y un Increment (incremento de frecuencia), seguidamente haz clic en Add Multiple y se añadirán a la lista de valores. También se pueden definir frecuencias individuales metiendo un valor numérico y haciendo clic en Add. El botón Copy copia la lista de frecuencias en el portapapeles, y Paste pega la lista de frecuencias desde el portapapeles.
    • Por ejemplo, Frequency1 = 20, Frequency2 = 100, Increment = 20 producirá una lista de frecuencias con los valores 20, 40, 60, 80 y 100.

lista-de-frecuencias

  • 1..FREQ1: Permite introducir un valor en Frequency1 (primer valor del rango), Increment (incremento de frecuencia), Number (número de repeticiones del incremento) y seguidamente haz clic en OK y se creará la lista de frecuencias.
    • Por ejemplo, Frequency1 = 20, Increment = 20, Number = 5 producirá una lista de frecuencias con los valores 20, 40, 60, 80 y 100.
  • 2..FREQ2: Permite introducir un valor en Frequency1 (primer valor del rango), Frequency2 (último valor del rango), Number (número de intervalos logaríthmicos dentro del rango) y seguidamente haz clic en OK y se creará la lista de frecuencias.
    • Por ejemplo, Frequency1 = 20, Frequency2 = 100, Increment = 4 producirá una lista de frecuencias con los valores 20, 29.907, 44.7214, 66.874 y 100.
  • 3..FREQ3: Permite introducir un valor en Frequency1 (primer valor del rango), Frequency2 (último valor del rango), Number (número de frecuencias de excitación entre dos frecuencias modales, incluyendo los valores de las propias frecuencias) y Cluster (es un factor que se usa para “agrupar” las frecuencias de excitación alrededor de los puntos finales del rango). También se puede activar la INTERPOLACIÓN LOGARITMICA (ON) o LINEAL (OFF) entre frecuencias. Finalmente haz clic en OK y se creará la lista de frecuencias.
    • Por ejemplo, Frequency1 = 20, Frequency2 = 300, Number = 4, Cluster = 1.0 y Logarithmic OFF con dos modos seleccionados de frecuencias 89.8135 y 243.5258 producirá una lista de frecuencias con los valores 20, 43.271, 66.5421, 89.8131, 141.051, 192.288, 243.526, 262.351, 281.175 y 300.
  • 4..FREQ4: Permite introducir un valor en Frequency1 (primer valor del rango), Frequency2 (último valor del rango), Number (número de frecuencias igualmente espaciadas) y Spread % (en %, es cómo se esparce el valor de cada frecuencia, una cantidad +/- del valor de cada modo), haz clic en OK y se creará la lista de frecuencias.
    • Por ejemplo, Frequency1 = 20, Frequency2 = 300, Number = 5 y Spread % = 3, con dos modos seleccionados de frecuencias 89.8135 (Modo#1) y 243.5258 (Modo#2) producirá una lista de frecuencias con los valores 87.1188 (97% del valor del Modo#1), 88.4659 (98.5%), 89.8131 (100%), 91.1603 (101.5%), 92.5075 (103%), 236.22 (97% del valor del Modo#2), 239.873 (98.5%), 243.526 (100%), 247.179 (101.5%) y 250.832 (103%).

Nota: Si queremos añadir de forma automática a la lista de frecuencias los valores de los modos de vibración la clave es seleccionar el tipo 4..FREQ4 y utilizar Number = 1 y Spread % = cualquier valor, tal como se muestra en la siguiente imagen, es lo más práctico:

freq4

Definición de Resultados

Tras la definición de los datos de entrada, la siguiente fase es definir qué resultados queremos obtener del análisis de respuesta forzada.

  • Save Results As: aquí podemos elegir entre crear “Output Vectors” con resultados en nodos y elementos, o crear funciones. Lo más práctico es crear funciones, el cálculo es muy rápido y los diagramas X-Y dan una idea rápida de las Funciones de Respuesta en Frecuencia (FRF) de la estructura.
  • Complex Data Type: podemos obtener resultados de la parte Real e Imaginaria, o resultados de magnitud y ángulo de fase.

salida-de-resultados

En cuanto a la salida de resultados, puedes pedir que sean nodales o elementales, y estén referidos a un nodo o grupo de nodos, o a un elemento o grupo de elementos, la creación de grupos es esencial antes de empezar el análisis.

Puedes pedir que la orden FORCED RESPONSE calcule resultados de vectores específicos, en vez del set completo: por ejemplo, puedes pedir que calcule la respuesta de desplazamientos en la dirección del eje Y vs. frecuencia en vez de pedir el set completo de desplazamientos de translación y rotación en los tres ejes X, Y, Z.

vector-selection

Pues nada, tras pulsar en OK se inicia el proceso de cálculo y en la siguiente imagen tenemos la respuesta de desplazamiento vs. frecuencia del nodo#4001 en el rango de frecuencias entre 0 y 500 Hz: el factor de amplificación dinámica (DAF, Dynamic Amplification Factor) es impresionante, fijaros que para la frecuencia cero el resultado es equivalente al análisis estático lineal, por lo tanto tenemos un factor de amplificación dinámica alrededor de 0.147/0.006 = 24.5 veces !!. Por tanto, si aplicáramos una fuerza periódica con una frecuencia de 40.8 Hz tendríamos un serio problema de resonancia que causaría la destrucción total de la estructura.

FRF-T2-nodo#40001

También podemos visualizar la Función de Respuesta en Frecuencia (FRF) de la estructura en formato logarítmico, aquí tenemos los resultados. Fijaros cómo la respuesta se maximiza en coincidencia con los modos de vibración de la estructura en la dirección del eje Y: Modo#1 = 40.8173 Hz, Modo#4 = 185 Hz y Modo#6 = 410.4 Hz.

FRF-T2-nodo#40001-formato-logaritmico

Aquí tenéis un vídeo que acabo de grabar esta noche donde explico el procedimiento paso-a-paso para usar la orden FORCED RESPONSE con FEMAP V11.2.2.

Y en este otro vídeo de SIEMENS grabado con motivo del lanzamiento de FEMAP V10.2 y NX Nastran 7.1 (Noviembre de 2010) también se explica cómo usar la orden FORCED RESPONSE, fijaros cómo ha cambiado FEMAP en poco más de cinco años, desde la versión V10.2 a la actual V11.2.2.:

Saludos,
Blas.

Datos de Contacto de IBERISA (Spain)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s